跳至內容

Windows on Ollama:本地运行大型语言模型(LLM)的新利器

更新時間
快连VPN:速度和安全性最佳的VPN服务
快连VPN:速度和安全性最佳的VPN服务

近期,OpenAI Translator 和 NextChat 都开始支持 Ollama 本地运行的大型语言模型了,这对「新手上路」的爱好者来说,又多了一种新玩法。

而且 Ollama on Windows(预览版)的推出,完全颠覆了在 Windows 设备上进行 AI 开发的方式,它为 AI 领域的探索者和普通的「试水玩家」指引了一条明确的道路。

什么是 Ollama?

Ollama 是一款开创性的人工智能(AI)和机器学习(ML)工具平台,它极大地简化了 AI 模型的开发和使用过程。

在技术社区里,AI 模型的硬件配置和环境搭建一直是个棘手的问题,而 Ollama 正是为了解决这样的关键需求而出现的:

  • 它不仅提供了一系列工具,更重要的是,这些工具使用起来非常直观且高效,不管你是 AI 领域的专业人士还是初涉此道的新手,都能在 Ollama 上找到对应的支持。
  • 不止于方便使用,Ollama 还让先进的 AI 模型和计算资源的获取不再局限于少数人。对于 AI 和 ML 社区而言,Ollama 的诞生具有里程碑意义,它推动了 AI 技术的普及,让更多的人能够去尝试和实践自己的 AI 创意。

为什么 Ollama 能够脱颖而出?

在众多 AI 工具中,Ollama 凭借以下几个关键优势脱颖而出,这些特性不仅彰显了其独特性,更解决了 AI 开发者和爱好者们最常遇到的难题:

  • 自动硬件加速:Ollama 能自动识别并充分利用 Windows 系统中的最优硬件资源。无论你是配备了 NVIDIA GPU,还是 CPU 支持 AVX、AVX2 这样先进的指令集,Ollama 都能实现针对性优化,确保 AI 模型更加高效地运行。有了它,就不用再头疼于复杂的硬件配置问题了,你可以将更多的时间和精力都集中在项目本身。
  • 无需虚拟化:在进行 AI 开发时,以往常常需要搭建虚拟机或配置复杂的软件环境。而 Ollama 让这一切都不再成为阻碍,直接就能开始 AI 项目的开发,整个流程变得简单快捷。对于想尝试 AI 技术的个人或组织来说,这种便捷性降低了很多门槛。
  • 接入完整的 Ollama 模型库:Ollama 为用户提供了丰富的 AI 模型库,包括像 LLaVA 这样的先进图像识别模型和 Google 最新推出的 Gemma 模型等。拥有这样一个全面的「武器库」,我们可以轻松尝试和应用各种开源模型,而不用自己费时费力地去搜寻整合。无论你想进行文本分析、图像处理,还是其他 AI 任务,Ollama 的模型库都能提供强有力的支持。
  • Ollama 的常驻 API:在软件互联的今天,将 AI 功能整合到自己的应用中极具价值。Ollama 的常驻 API 大大简化了这一过程,它会在后台默默运行,随时准备将强大的 AI 功能与你的项目无缝对接,而无需额外的复杂设置。有了它,Ollama 丰富的 AI 能力会随时待命,能自然而然地融入你的开发流程,进一步提升工作效率。

Ollama 通过这些精心设计的功能特性,不仅解决了 AI 开发中的常见难题,还让更多的人能够轻松地接触和应用先进的 AI 技术,极大地扩展了 AI 的应用前景。

在 Windows 上使用 Ollama

欢迎迈入 AI 和 ML 的新时代!接下来,我们将带你完成上手的每一步,还会提供一些实用的代码和命令示例,确保你一路畅通。

步骤 1:下载和安装

1访问 Ollama Windows Preview 页面,下载OllamaSetup.exe安装程序。

2双击文件,点击「Install」开始安装。

3安装完成之后,就可以开始在 Windows 上使用 Ollama 了,是不是非常简单。

步骤 2:启动 Ollama 并获取模型

要启动 Ollama 并从模型库中获取开源 AI 模型,请按以下步骤操作:

1在「开始」菜单中点击 Ollama 图标,运行后会在任务栏托盘中驻留一个图标。

2右键点击任务栏图标,选择「View log」打开命令行窗口。

3执行以下命令来运行 Ollama,并加载模型:

ollama run [modelname]
登录后复制

执行以上命令后,Ollama 将开始初始化,并自动从 Ollama 模型库中拉取并加载所选模型。一旦准备就绪,就可以向它发送指令,它会利用所选模型来进行理解和回应。

记得将modelname名称换成要运行的模型名称,常用的有:

模型 参数 大小 安装命令 发布组织
Llama 2 7B 3.8GB ollama run llama2 Meta
Code Llama 7B 3.8GB ollama run codellama Meta
Llama 2 13B 13B 7.3GB ollama run llama2:13b Meta
Llama 2 70B 70B 39GB ollama run llama2:70b Meta
Mistral 7B 4.1GB ollama run mistral Mistral AI
mixtral 8x7b 26GB ollama run mixtral:8x7b Mistral AI
Phi-2 2.7B 1.7GB ollama run phi Microsoft Research
LLaVA 7B 4.5GB ollama run llava Microsoft ResearchColumbia UniversityWisconsin
Gemma 2B 2B 1.4GB ollama run gemma:2b Google
Gemma 7B 7B 4.8GB ollama run gemma:7b Google
Qwen 4B 4B 2.3GB ollama run qwen:4b Alibaba
Qwen 7B 7B 4.5GB ollama run qwen:7b Alibaba
Qwen 14B 14B 8.2GB ollama run qwen:14b Alibaba

运行 7B 至少需要 8GB 内存,运行 13B 至少需要 16GB 内存。

步骤 3:使用模型

如前所述,Ollama 支持通过各种各样的开源模型来完成不同的任务,下面就来看看怎么使用。

  • 基于文本的模型:加载好文本模型后,就可以直接在命令行里输入文字开始与模型「对话」。例如,阿里的 Qwen(通义千问):
  • 基于图像的模型:如果你想使用图像处理模型,如 LLaVA 1.6,可以使用以下命令来加载该模型:
ollama run llava1.6
登录后复制

Ollama 会使用你选择的模型来分析这张图片,并给你一些结果,比如图片的内容和分类,图片是否有修改,或者其他的分析等等(取决于所使用的模型)。

步骤 4:连接到 Ollama API

我们不可能只通过命令行来使用,将应用程序连接到 Ollama API 是一个非常重要的步骤。这样就可以把 AI 的功能整合到自己的软件里,或者在 OpenAI Translator 和 NextChat 这类的前端工具中进行调用。

以下是如何连接和使用 Ollama API 的步骤:

  • 默认地址和端口:Ollama API 的默认地址是http://localhost:11434,可以在安装 Ollama 的系统中直接调用。
  • 修改 API 的侦听地址和端口:如果要在网络中提供服务,可以修改 API 的侦听地址和端口。

1右击点击任务栏图标,选择「Quit Ollama」退出后台运行。

2使用Windows + R快捷键打开「运行」对话框,输出以下命令,然后按Ctrl + Shift + Enter以管理员权限启动「环境变量」。

C:Windowssystem32rundll32.exe sysdm.cpl, EditEnvironmentVariables
登录后复制

3要更改侦听地址和端口,可以添加以下环境变量:

  • 变量名:OLLAMA_HOST
  • 变量值(端口)::8000

只填写端口号可以同时侦听(所有) IPv4 和 IPv6 的:8000端口。

要使用 IPv6,需要 Ollama 0.0.20 或更新版本。

4如果安装了多个模型,可以通过OLLAMA_MODELS变量名来指定默认模型。

5更改完之后,重新运行 Ollama。然后在浏览器中测试访问,验证更改是否成功。

6示例 API 调用: 要使用 Ollama API,可以在自己的程序里发送 HTTP 请求。下面是在「终端」里使用curl命令给 Gemma 模型发送文字提示的例子:

curl http://192.168.100.10:8000/api/generate -d '{"model": "gemma:7b","prompt": "天空为什么是蓝色的?"}'
登录后复制

返回响应的格式,目前只支持 Json 格式。

Ollama 的常用命令有:

# 查看 Ollama 版本ollama -v# 查看已安装的模型ollama list# 删除指定模型ollama rm [modelname]# 模型存储路径# C:Users.ollamamodels
登录后复制

按照上述步骤,并参考命令示例,你可以在 Windows 上尽情体验 Ollama 的强大功能。不管是在命令行中直接下达指令,通过 API 将 AI 模型集成到你的软件当中,还是通过前端套壳,Ollama 的大门都已经为你敞开。

Ollama on Windows 的最佳实践

要让 Ollama 在 Windows 上充分发挥最大潜力,需要注意以下几点最佳实践和技巧,这将帮助你优化性能并解决一些常见问题:

优化 Ollama 的性能:

  • 检查硬件配置: 确保你的设备满足 Ollama 推荐的硬件要求,尤其是运行大型模型时。如果你有 NVIDIA GPU,还可以享受 Ollama 提供的自动硬件加速,大幅提升计算速度。
  • 更新驱动程序: 保持显卡驱动程序为最新版本,以确保与 Ollama 的兼容性和最佳性能。
  • 释放系统资源:运行大型模型或执行复杂任务时,请关闭不必要的程序,释放系统资源。
  • 选择合适模型:根据任务需求选择合适的模型。大参数模型虽然可能更准确,但对算力的要求也更高。对于简单任务,使用小参数模型更有效率。

Ollama 常见问题解答

安装问题

  • 确保你的 Windows 系统是最新版本。
  • 确保你拥有安装软件所需的权限。
  • 尝试以管理员身份运行安装程序。

模型加载错误

  • 检查输入的命令是否正确。
  • 确认模型名称与 Ollama 模型库中的名称相符。
  • 检查 Ollama 版本并进行更新。

Ollama API 连接问题

  • 确保 Ollama 正在运行。
  • 检查侦听地址和端口,特别是端口是否被其他应用占用。

在本教程中,我们学习了如何在 Windows 上安装和使用 Ollama,包括安装 Ollama、执行基础命令、使用 Ollama 模型库,以及通过 API 连接 Ollama。建议你深入研究 Ollama,并尝试各种不同的模型。

Ollama 的潜力无限,借助它,你可以实现更多可能!

以上就是Windows on Ollama:本地运行大型语言模型(LLM)的新利器的详细内容,更多请关注本站其它相关文章!

更新時間

發表留言

請注意,留言須先通過審核才能發佈。