快连VPN:速度和安全性最佳的VPN服务
三角函數公式:正弦定理:a / sina = b / sinb = c / sinc;餘弦定理:c² = a² + b² - 2abcosc;正切定理:tan(a/2) = (a - b) / (a + b) * cot(c/2);倍角公式:sin(2a) = 2sinacosa;和差角公式:sin(a ± b) = sinacosb ± cosasinb;積化和差公式:sinacosb = (1/2)[sin(a + b) + sin(a - b)]。
三角函數推導公式口訣
正弦定理:
- a / sin(A) = b / sin(B) = c / sin(C)
餘弦定理:
- c² = a² + b² - 2abcos(C)
正切定理:
- tan(A/2) = (a - b) / (a + b) * cot(C/2)
倍角公式:
- sin(2A) = 2sin(A)cos(A)
- cos(2A) = cos²(A) - sin²(A) = 1 - 2sin²(A)
- tan(2A) = (2tan(A)) / (1 - tan²(A))
半角公式:
- sin(A/2) = ±√((1 - cos(A)) / 2)
- cos(A/2) = ±√((1 + cos(A)) / 2)
- tan(A/2) = ±√((1 - cos(A)) / (1 + cos(A)))
和差角公式:
- sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)
- cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)
- tan(A ± B) = (tan(A) ± tan(B)) / (1 ∓ tan(A)tan(B))
積化和差公式:
- sin(A)cos(B) = (1/2)[sin(A + B) + sin(A - B)]
- cos(A)sin(B) = (1/2)[sin(A + B) - sin(A - B)]
和差化積公式:
- sin(A) + sin(B) = 2cos((A - B)/2)sin((A + B)/2)
- sin(A) - sin(B) = 2sin((A + B)/2)cos((A - B)/2)
- cos(A) + cos(B) = 2cos((A + B)/2)cos((A - B)/2)
- cos(A) - cos(B) = -2sin((A + B)/2)sin((A - B)/2)
輔助角公式:
- sin(A + π) = -sin(A)
- cos(A + π) = -cos(A)
- tan(A + π) = -tan(A)
- sin(A - π) = -sin(A)
- cos(A - π) = cos(A)
- tan(A - π) = -tan(A)
以上就是三角函數推導公式口訣的詳細內容,更多請關注本站其它相關文章!